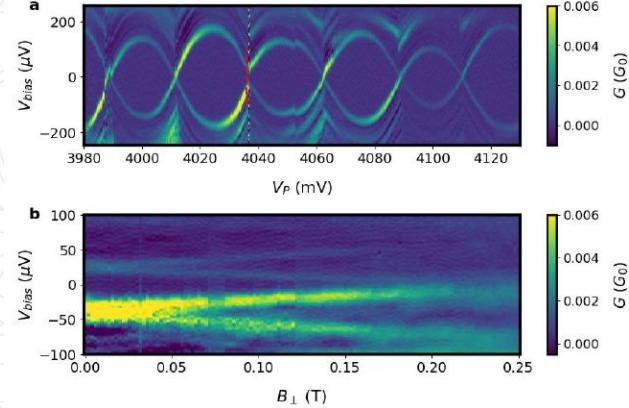


Institute of
Science and
Technology
Austria

Postdoc position

Hybrid semiconducting-superconducting Ge devices


Holes in planar germanium are gaining significant interest in the field of spin qubits and hybrid semiconducting-superconducting devices [1,2]. This is due to desirable properties, including low effective mass, strong spin-orbit interaction, inducible superconductivity, and the potential for isotopic purification. However, a key challenge lies in Ge's small in-plane g-factor, which complicates the integration of spin qubits with superconducting circuits.

Recently, the first proximitized quantum dot in planar Ge was demonstrated, using PtGeSi superconducting leads. These leads exhibit a $75 \mu\text{eV}$ -induced gap and robust magnetic-field resilience in all three spatial directions.

At ISTA we have recently realized a hard-induced gap in a Ge quantum well with a zero-conductance region of $200 \mu\text{eV}$ and BCS peaks at $270 \mu\text{eV}$. We have used this platform to proximitize a quantum dot [4], showing a gate-tunable superconductor-dot hybridization. The magnetic field resilience exceeds 200 mT in the out-of-plane direction using wide superconducting leads. This combination of stable quantum dots, a large hard induced gap, and 3D magnetic field resilience with micron-scale superconducting contacts represent a promising step toward integrating spin qubits into cQED architectures and moving towards Cooper-pair splitter devices.

References:

- [1] G. Scappucci et al. *Nat. Rev. Mater.* **6**, 926 (2021)
- [2] M. Pita-Vidal et al., arXiv: 2512.23336 (2026)
- [3] L. Lakic et. al. *Nat. Mater.* **24**, 552-558 (2025)
- [4], G. Fabris, P. Falthansl-Scheinecker et al., in preparation (2026)

Apply now

To apply for this position
send your CV by e-mail to:

georgios.katsaros@ist.ac.at

Requirements

- High motivation
- Proven track record in hybrid quantum dot devices and/or RF reflectometry experience
- Enjoy working in an international environment
- Team player mentality

